
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 16 – Recursion

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• What makes “good code” good

– Readability

– Adaptability

– Commenting guidelines

• Incremental development

2

Function Returns

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To introduce recursion

• To better understand the concept of “stacks”

• To begin to learn how to “think recursively”

– To look at examples of recursive code

– Summation, factorial, etc.

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Introduction to Recursion

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

What is Recursion?

• In computer science, recursion is a way of
thinking about and solving problems

• It’s actually one of the central ideas of CS

• In recursion, the solution depends on solutions
to smaller instances of the same problem

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive Solutions

• When creating a recursive solution, there are
a few things we want to keep in mind:

1. We need to break the problem into
smaller pieces of itself

2. We need to define a “base case” to stop at

3. The smaller problems we break down into
need to eventually reach the base case

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Normal vs Recursive Functions

• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

8

main()

square()

countdown()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Would We Use Recursion?

• In computer science, some problems are more easily
solved by using recursive methods

• For example:

– Traversing through a directory or file system

– Traversing through a tree of search results

– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of
using recursive methods

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Toy Example of Recursion
def countdown(intInput):

print(intInput)

if (intInput > 2):

countdown(intInput-1)

def main():

countdown(50)

main()

10

This is where the
recursion occurs.

You can see that the
countdown()

function calls itself.

What does this
program do? This program prints

the numbers from
50 down to 2.

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Visualizing Recursion

• To understand how recursion works, it helps to
visualize what’s going on

• Python uses a stack to keep track of function calls

• A stack is an important computer science concept

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stacks

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stacks

• A stack is like a bunch of lunch trays in a cafeteria

• It has only two operations:

– Push

• You can push something onto the top of the stack

– Pop

• You can pop something off the top of the stack

• Let’s see an example stack in action

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack Example

• In the animation below, we “push 3”,
then “push 8”, and then pop twice

14

Time 0

Empty

Time 1

Push 3

Time 2

Push 8

Time 3

Pop

Time 4

Pop

3 3
8

3
8

3

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack Details

• In computer science, a stack is a
last in, first out (LIFO) data structure

• It can store any type of data, but has only
two operations: push and pop

• Push adds to the top of the stack, hiding
anything else on the stack

• Pop removes the top element from the stack

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack Details

• The nature of the pop and push operations
also means that stack elements have a
natural order

• Elements are removed from the stack in the
reverse order to the order of their addition

– The lower elements are those that
have been in the stack the longest

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack Exercise

• In your notebooks, trace the following
commands, to the stack’s final appearance

17

1. Push “D”

2. Push “O”

3. Push “D”

4. Pop

5. Push “G”

6. Push “M”

7. Push “K”

8. Pop

9. Push “T”

10. Pop

11. Pop

12. Push “G”

13. Push “E”

14. Push “F”

15. Pop

16. Push “H”

17. Pop

18. Push “S”

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stacks and Functions

• When you run your program, the computer
creates a stack for you

• Each time you call a function, the function
is pushed onto the top of the stack

• When the function returns or exits, the
function is popped off the stack

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack Example

• Run

19

Time 0
Empty

Time 1
Call main()

Time 2
Call square(7)

Time 3
square() returns

Time 4
main() ends

main() main()

square(7)

main()

square(7)

main()

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stacks and Recursion

• If a function calls itself recursively, you push
another call to the function onto the stack

• We now have a simple way to visualize how
recursion really works

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Toy Example of Recursion
def countdown(intInput):

print(intInput)

if (intInput > 2):

countdown(intInput-1)

def main():

countdown(50)

main()

21

Here’s the code again.

Now, that we
understand stacks, we
can visualize the
recursion.

We’ll call the
function with a value
of just 4 for the trace.

We’ll also shorten it
to cDown().

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Stack and Recursion in Action

• Skipping time step 0, start by pushing main()…

22

Time 1 Time 2 Time 3 Time 4

main() main()

cDown(4)

main()

cDown(4)

main()

Time 5

cDown(4)

cDown(3)

Time 8

cDown(3)

cDown(2)

main()

cDown(4)

cDown(3)

cDown(2)

main()

Time 6, 7…

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted23

Defining Recursion

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

“Cases” in Recursion

• A recursive function must have two things:

• At least one base case

– When a result is returned (or the function ends)

– “When to stop”

• At least one recursive case

– When the function is called again with new inputs

– “When to go (again)”

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Terminology
def fxn(n):

if n == 1:

return 1

else:

return fxn(n - 1)

• Notice that the recursive call is passing in
simpler input, approaching the base case

25

base case

recursive case

recursive call

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursion Example
def summ(n):

if n == 1:

return 1

else:

return n + summ (n - 1)

• What is summ (1) ?

• What is summ (2) ?

• What is summ (100) ?

– We at least know that it’s 100 + summ(99)

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursion Example
def summ(n):

if n == 1:

return 1

else:

return n + summ (n - 1)

27

summ(3)

3 + summ(2)

2 + summ(1)

1

3 + 2 + 1 = 6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Factorials

• 4! = 4 × 3 × 2 × 1 = 24

• Does anyone know the value of 9! ?

• 362,880

• Does anyone know the value of 10! ?

• How did you know?

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Factorial

• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n× (n - 1)!

• That's a recursive definition!

– The answer to a problem can be defined as
a smaller piece of the original problem

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Factorial
def fact(n):

return n * fact(n - 1)

fact(3)

3 * fact(2)

2 * fact(1)

1 * fact(0)

0 * fact(-1)

...

What
happened?
What went

wrong?

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Factorial (Fixed)
def fact(n):

if n == 0:

return 1

else:

return n * fact(n - 1)

fact(3)

3 * fact(2)

2 * fact(1)

1 * fact(0)

1

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted32

Recursion Practice

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Thinking Recursively

• Anything we can do with a while loop can
also be accomplished through recursion

• Let’s get some practice by transforming
basic loops into a recursive function

• To keep in mind:

– What is the base case? The recursive case?

– Are we returning values, and if so, how?

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Non-Recursive sumList()

• Sum the contents of a list together
def sumList(numList):

total = 0

for i in range(len(numList)):

total = total + numList[i]

return total

• Transform this into a recursive function

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive sumList()

• Recursively sum the contents of a list together

def recSumList(currList, index, total):

BASE CASE: reached the end of the list

if index == len(currList):

return total

else:

total += currList[index]

RECURSIVE CALL: call with updated index

return recSumList(currList, index+1, total)

35

this return is
very important

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive sumList()

• Recursively sum the contents of a list together

def recSumList(currList, index):

BASE CASE: reached the end of the list

if index == len(currList):

return 0

else:

RECURSIVE CALL: add this element to rest of list

print("Adding", currList[index], "to total")

return currList[index] + \

recSumList(currList, index+1)

36

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive Thinking

• Sometimes, creating a recursive function requires
us to think about the problem differently

• What kind of base case do we need for summing
a list together? How do we know we’re “done”?

– Instead of approaching the problem as
before, you could think of it instead as adding the
first element to the sum of the rest of the list

37

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive Summing

myList = [3, 5, 8, 7, 2, 6, 1]

3 + [5, 8, 7, 2, 6, 1]

5 + [8, 7, 2, 6, 1]

8 + [7, 2, 6, 1]

etc...

• What is the base case here?

• How does the recursive case work?

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Recursive sumList()

• Recursively sum the contents of a list together

def recSumList(currList):

BASE CASE: no elements left (empty list)

if len(currList) == 0:

return 0

else:

RECURSIVE CALL: add first element to rest of list

print("Adding", currList[0], "to", currList[1:])

return currList[0] + recSumList(currList[1:])

39

again, this return
is very important

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Margaret Hamilton

– Who is she?

• The original Hamilton

– We’ll cover her
next time

40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 2 is out on Blackboard now

– Design is due by Friday (Apr 12th) at 11:59:59 PM

– Project is due by Friday (Apr 19th) at 11:59:59 PM

• Significantly more difficult than Project 1

– Probably at least at 10 hour project (closer to 15)

• Second midterm exam is April 17th and 18th

41

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Pancake drizzle:

– http://www.topwithcinnamon.com/2013/01/2-ingredient-healthy-pancakes-gluten-free-
dairy-free.html

• Margaret Hamilton
– https://en.wikipedia.org/wiki/File:Margaret_Hamilton_in_action.jpg

42

